Adaptive Methods for Semi-linear Elliptic Equations with Critical Exponents and Interior Singularities
نویسندگان
چکیده
We consider the eeectiveness adaptive nite-element methods for nding the nite element solutions of the parametrised semi-linear elliptic equation u+u+u 5 = 0; u > 0, where u 2 C 2 ((); for a domain IR 3 and u = 0 on the boundary of : This equation is important in analysis and it is known that there is a value 0 > 0 such that no solutions exist for < 0 and a singularity forms as ! 0. Furthermore the linear operator L deened by L' = '+'+5u 4 ' has a singular inverse in this limit. We demonstrate that conventional adaptive methods (using both static and dynamic regridding) based on usual error estimates fail to give accurate solutions and indeed admit spurious solutions of the diierential equation when < 0. This is directly due to the lack of invertibility of the operator L. In contrast we show that error estimates which take this into account can give answers to any prescribed tolerance. Adaptive methods for semi-linear elliptic equations with singularities.
منابع مشابه
Adaptive Methods for Semi-linear Elliptic Equations with Critical Exponents and Interior Singularities Adaptive Methods for Semi-linear Elliptic Equations with Critical Exponents and Interior Singularities
We consider the eeectiveness of adaptive nite-element methods for nding the nite element solutions of the parametrised semi-linear elliptic equation u+u+u 5 = 0; u > 0, where u 2 C 2 ((); for a domain IR 3 and u = 0 on the boundary of : This equation is important in analysis and it is known that there is a value 0 > 0 such that no solutions exist for < 0 and a singularity forms as ! 0. Furtherm...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملEnergy Estimates for a Class of Semilinear Elliptic Equations on Half Euclidean Balls
For a class of semi-linear elliptic equations with critical Sobolev exponents and boundary conditions, we prove point-wise estimates for blowup solutions and energy estimates. A special case of this class of equations is a locally defined prescribing scalar curvature and mean curvature type equation.
متن کاملNew variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996